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Recently, Høye, Brevik, Ellingsen, and Aarseth �Phys. Rev. E 75, 051127 �2007�� claimed that the use of the
Drude dielectric function leads to zero Casimir entropy at zero temperature in accordance with Nernst’s
theorem. We demonstrate that their proof is not applicable to metals with perfect crystal lattices having no
impurities. Thus there is no contradiction with previous results in the literature proving that the Drude dielec-
tric function violates the Nernst theorem for the Casimir entropy in the case of perfect crystal lattices. We also
indicate that the approximation of temperature independent relaxation frequency used in the paper leads to
incorrect values of numerical coefficients in the obtained asymptotic expressions for metals with impurities.
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As correctly mentioned in the Introduction of Ref. �1�, the
relaxation frequency of a metal ��T� goes to zero in accor-
dance with the Bloch-Grüneisen law, ��T��T5, when tem-
perature T goes to zero. It should be particularly emphasized
that the Bloch-Grüneisen law is true for metals with perfect
crystal lattices having no impurities. This law is also valid
for metals with impurities at temperatures larger than 3–4 K
but smaller than TD /4, where TD is the Debye temperature.
As all real metals have a small fraction of impurities, at T
well below 3–4 K the relaxation parameter instead of zero
goes to some residual value �0 when T vanishes.

It has been known that there is a discussion in the litera-
ture on how to describe real metals in the theory of the ther-
mal Casimir force. All sides participating in this discussion
agree that the correct approach must be in agreement with
the Nernst heat theorem. The question arises whether or not
some theoretical approach is acceptable if it agrees with the
Nernst theorem only when impurities are taken into account
and disagrees otherwise. The answer is that such an approach
is not acceptable. This is because the perfect crystal lattice is
a truly equilibrium system with a nondegenerate dynamical
state of lowest energy. At zero temperature any part of the
system must be in a single ground quantum state �2�. The
entropy is the logarithm of the number of states. As a result,
the Casimir entropy, computed for a perfect crystal lattice,
must be equal to zero. This is a direct consequence of quan-
tum statistical physics. If one admits violation of the Nernst
theorem for perfect crystal lattice, this would lead to the
eventual abandonment of much of theoretical condensed
matter physics, including the theory of electron-phonon in-
teractions.

The analytical derivation of the thermal correction to the
Casimir energy in Ref. �1� is performed for two Au plates
with account of impurities. It is based on the Drude model
and uses the condition

�m�T� � ��T� . �1�

This condition should be satisfied by sufficient number of
Matsubara frequencies �m with m=1,2 ,3 , . . . �see Eqs. �5�
and �9� in Ref. �1�; note that Ref. �1� omits the lower index m

and the argument T�. Here �m�T�=2�kmT /�, k is the Boltz-
mann constant and m=0,1 ,2 , . . . .

It is easily seen that in the case of perfect crystal lattice
the condition �1� does not hold for any nonzero Matsubara
frequency. In fact, according to Ref. �1�, for Au ��T
=300 K�=34.5 meV whereas �1�T=300 K�=161.9 meV.
Thus ��T=300 K���1�T=300 K� in contradiction with as-
sumption �1�. Taking into account that �m=m�1, the same
inequality is valid for all nonzero Matsubara frequencies.
When T decreases from room temperature up to approxi-
mately TD /4 �TD=165 K for Au �3��, ��T��T, i.e., de-
creases with decreasing temperature following the same law
as �m. This preserves the inequality

��T� � �m�T�, m = 1,2,3, . . . , �2�

which is the opposite to Eq. �1�. At T�TD /4 the relaxation
frequency decreases even more rapidly than �m with decreas-
ing T �i.e., as �T5 according to the Bloch-Grüneisen law due
to electron-phonon collisions and as �T2 at liquid helium
temperatures due to electron-electron scattering�. As a result,
at arbitrary low temperatures for perfect crystal lattices it
holds

��T� � �m�T�, m = 1,2,3, . . . . �3�

From this inequality, it follows �4� that the Casimir free en-
ergy at low T contains a term that is linearly dependent on T.
This leads to a nonzero entropy at T=0, i.e., to a violation of
Nernst’s theorem, as was discussed in Ref. �4�.

Inequality �3� is just the opposite of the inequality �1�
used in the derivation of Ref. �1�. Thus, all the results ob-
tained in Ref. �1� are inapplicable to perfect crystal lattices.
According to Ref. �1� “the Nernst theorem is not violated
when using the realistic Drude dispersion model” and this
conclusion “is clearly in contrast to that presented in various
earlier works �4–8�”. These formulations are, however, mis-
leading. References �4–8� deal with perfect crystal lattices
and prove that for such lattices the use of the Drude model
leads to the violation of the Nernst heat theorem. As ex-
plained above, the derivation in Ref. �1� is not applicable to
perfect crystal lattices because it uses the inequality �1�
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which is just the opposite to the inequality �3� satisfied for
perfect lattices. Thus there is no contradiction between the
results of Ref. �1� and Refs. �4–8�.

What is in fact found in Ref. �1� �see Eq. �31�� is the
analytic behavior of the low-temperature thermal correction
to the Casimir energy using the Drude model for crystal lat-
tices with impurities:

�F = C1T2�1 − C2T1/2 + ¯ � , �4�

where C1 and C2 are constants. According to this correction,
at very low temperatures the Casimir entropy abruptly jumps
to zero starting from negative values. Thus formally the
Nernst heat theorem is satisfied when impurities are present.
This result is not new. It was first demonstrated numerically
in Ref. �9� and has been acknowledged in Refs. �4–8�. Ref-
erence �1� provides an analytical proof.

However, the values of numerical coefficients C1 and C2
for Au in Eq. �4� are determined in Ref. �1� incorrectly. The
reason is that the dependence of � on the temperature has
been neglected in Ref. �1�. To calculate these coefficients,
Ref. �1� uses the Au relaxation frequency ��T=300 K�
=34.5 meV and the inequality �1�. However, as explained
above, at room temperature and also at much lower tempera-
tures in the application range of the Bloch-Grüneisen law, the
inequality �1� is violated and exactly the opposite inequality
�3� is valid. The inequality �1� used in Ref. �1� becomes valid
only for imperfect lattices at very low T when, due to the
presence of impurities, the relaxation frequency deviates
from the Bloch-Grüneisen law and takes a nonzero
T-independent residual value �0. For typical Au samples the
residual relaxation frequency is approximately equal to �0
�34.5�10−3 meV, and for the best samples which are most
close to the perfect crystal it is even three orders of magni-
tude lower: �0�34.5�10−6 meV �3�. In order that at least
the first ten Matsubara frequencies satisfy the inequality

�m�T� � �0, �5�

the temperature must be T�10−3 K for typical Au samples
and T�10−6 K for the best Au samples. For the applicability
of asymptotic expression �4� �Eq. �31� in Ref. �1�� tempera-
tures must be additionally at least one order of magnitude
less.

As was mentioned above, to calculate the values of the
coefficients C1 and C2 Ref. �1� uses the value ��T=300 K�
=34.5 meV. The correct values to be used instead are �0
=34.5�10−3 meV for typical Au samples and �0=34.5
�10−6 meV for the best Au samples. As a result, Eqs. �13�,
�18�, and �30� in Ref. �1� lead to the following values of
coefficients in Eq. �4�:

C1 = 5.81 � 10−10 J/�m2 K2�,

C2 = 95.75 K−1/2 �typical Au samples� ,

C1 = 5.81 � 10−7 J/�m2 K2�,

C2 = 3028.0 K−1/2 �best Au samples� . �6�

This should be compared with the values presented in
Ref. �1�:

C1 = 5.81 � 10−13 J/�m2 K2�, C2 = 3.03 K−1/2. �7�

The results of numerical computations in Ref. �1� were
found to be in agreement with the asymptotic expression �4�
containing the wrong coefficients �7�. The reason is that in
numerical computations the room temperature relaxation fre-
quency ��T=300 K�=34.5 meV was also used incorrectly
within the wide temperature region from 0.01 K to 800 K.
To obtain the correct computation results, from 4–5 K to
800 K the actual temperature dependence of the relaxation
frequency on T should be employed �given by the Bloch-
Grüneisen law and the linear dependence�. For temperatures
around zero the residual relaxation frequency for Au, �0, de-
pending on the concentration of impurities, must be applied.

To conclude, Ref. �1� finds �up to incorrectly determined
coefficients� the low-temperature behavior of the thermal
correction to the Casimir energy in the configuration of two
Au plates with impurities, using the permittivity of the Drude
model. Although the results of Ref. �1� are in formal agree-
ment with the Nernst theorem, there is no contradiction with
the results of Refs. �4–8� demonstrating the violation of the
Nernst theorem in the Drude model approach for perfect
crystal lattices. The reason is that the condition used by the
authors of Ref. �1� in their derivation is violated for perfect
lattices and can be applied to only lattices with impurities.

It must be emphasized that the results of Ref. �1� do not
solve the problem of inconsistency of the Drude model with
basic thermodynamic principles in the application to the Ca-
simir entropy, as the authors claim. Reference �1� recognizes
that “a simple physical model of course cannot be permitted
to run into conflict with thermodynamics.” However, as is
seen in the above and from Refs. �4–8�, the Drude model
violates the Nernst heat theorem for the Casimir entropy in
the case of metals with perfect crystal lattices. This alone
makes the Drude model approach to the Casimir force unac-
ceptable as being in contradiction with quantum statistical
physics. According to the authors of Ref. �1�, the approaches
with nonzero contributions of the transverse electric term at
zero frequency �recall that in the Drude model approach this
term does not contribute at �=0� would violate the Nernst
theorem. This is misinformation. As is shown in Refs. �4,10�,
both the plasma model approach and the impedance ap-
proach are in agreement with the Nernst theorem, and both
of them include a nonzero contribution from the transverse
electric term at zero frequency. Thus, although for metals
with impurities the Drude model approach leads to zero Ca-
simir entropy at zero temperature, this approach is theoreti-
cally invalid and fails to provide a consistent description of
the thermal Casimir force in the framework of the Lifshitz
theory. The authors of Ref. �1� underline that they “shall not
be concerned with a comparison between experiment and
theory.” In this respect it is pertinent to note that measure-
ments of Refs. �11,12� exclude the Drude model approach to
the thermal Casimir force at a 99.9% confidence level within
the wide range of separations between the plates from 210 to
620 nm. The only theoretical approach which is consistent
with both short separation �13� and long separation �5,11,12�
measurements of the Casimir force is based on the use of the
generalized plasmalike dielectric permittivity �8,12� which
takes into account dissipation processes due to interband
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transitions of core electrons, but disregards dissipation due to
scattering of conduction electrons. The resolution of the
problem why the account of one type of dissipation in the
Lifshitz theory is necessary while that of another leads to
contradictions with thermodynamics and experiment is ex-
pected in near future.
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